{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# HIDDEN\n", "from datascience import *\n", "%matplotlib inline\n", "path_data = '../../../data/'\n", "import matplotlib.pyplot as plots\n", "plots.style.use('fivethirtyeight')\n", "import math\n", "import numpy as np\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# HIDDEN\n", "\n", "colors = Table.read_table(path_data + 'roulette_wheel.csv').column('Color')\n", "pockets = make_array('0','00')\n", "for i in np.arange(1, 37):\n", " pockets = np.append(pockets, str(i)) \n", "\n", "wheel = Table().with_columns(\n", " 'Pocket', pockets,\n", " 'Color', colors\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The Central Limit Theorem ###\n", "Very few of the data histograms that we have seen in this course have been bell shaped. When we have come across a bell shaped distribution, it has almost invariably been an empirical histogram of a statistic based on a random sample.\n", "\n", "The examples below show two very different situations in which an approximate bell shape appears in such histograms." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Net Gain in Roulette ###\n", "In an earlier section, the bell appeared as the rough shape of the total amount of money we would make if we placed the same bet repeatedly on different spins of a roulette wheel. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
Color | \n", "|
---|---|
0 | green | \n", "
00 | green | \n", "
1 | red | \n", "
2 | black | \n", "
3 | red | \n", "
4 | black | \n", "
5 | red | \n", "
6 | black | \n", "
7 | red | \n", "
8 | black | \n", "
... (28 rows omitted)
" ], "text/plain": [ "Pocket | Color\n", "0 | green\n", "00 | green\n", "1 | red\n", "2 | black\n", "3 | red\n", "4 | black\n", "5 | red\n", "6 | black\n", "7 | red\n", "8 | black\n", "... (28 rows omitted)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wheel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that the bet on red pays even money, 1 to 1. We defined the function `red_winnings` that returns the net winnings on one \\$1 bet on red. Specifically, the function takes a color as its argument and returns 1 if the color is red. For all other colors it returns -1." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def red_winnings(color):\n", " if color == 'red':\n", " return 1\n", " else:\n", " return -1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The table `red` shows each pocket's winnings on red." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "Color | Winnings: Red | \n", "|
---|---|---|
0 | green | -1 | \n", "
00 | green | -1 | \n", "
1 | red | 1 | \n", "
2 | black | -1 | \n", "
3 | red | 1 | \n", "
4 | black | -1 | \n", "
5 | red | 1 | \n", "
6 | black | -1 | \n", "
7 | red | 1 | \n", "
8 | black | -1 | \n", "
... (28 rows omitted)
" ], "text/plain": [ "Pocket | Color | Winnings: Red\n", "0 | green | -1\n", "00 | green | -1\n", "1 | red | 1\n", "2 | black | -1\n", "3 | red | 1\n", "4 | black | -1\n", "5 | red | 1\n", "6 | black | -1\n", "7 | red | 1\n", "8 | black | -1\n", "... (28 rows omitted)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "red = wheel.with_column(\n", " 'Winnings: Red', wheel.apply(red_winnings, 'Color')\n", " )\n", "red" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Your net gain on one bet is one random draw from the `Winnings: Red` column. There is an 18/38 chance making \\$1, and a 20/38 chance of making -$1. This probability distribution is shown in the histogram below." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/choldgraf/anaconda/envs/textbook/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEcCAYAAABJUoqBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XtUVPXeP/D3gJoI6igMYCJgMiJ4CeWmGKSUl6RESjLr0RM9aqGnvGJSWdbjCXjgkCjIMREr1FOKeLwuig6UF0DxHC1Tls7RwFQcEM4oFzmmzO8Pf8zTBAx7YIaZPbxfa7GWs7979vfzZYbe7dt3S1QqlRpEREQiZGXqAoiIiDqKIUZERKLFECMiItFiiBERkWgxxIiISLQYYkREJFoMMSIiEi2GGBERiRZD7DcUCoWpSzA6jtEycIyWgWPsPIYYERGJFkOMiIhEiyFGRESixRAjIiLRYogREZFoMcSIiEi0GGJERCRaDDEiIhKtHqYuwJws//gz2NramroMo6qvr7f4Ma5fGmnqEoioi3BPjIiIRIshRkREosUQIyIi0WKIERGRaDHEiIhItBhiREQkWiYLsbi4OEilUq2f4cOHa9rVajXi4uIwYsQIODs7IywsDKWlpaYql4iIzJBJ98TkcjkuXryo+SksLNS0paSkIC0tDQkJCcjPz4dMJkNERARqa2tNWDEREZkTk4ZYjx494OTkpPlxcHAA8HAvLD09HcuWLUN4eDi8vb2Rnp6Ouro6ZGdnm7JkIiIyIyYNsbKyMowYMQJjxozBa6+9hrKyMgBAeXk5lEolQkNDNeva2NggKCgIJ0+eNFG1RERkbkw27ZSfnx82b94MuVyOW7duITExEVOnTkVxcTGUSiUAQCaTab1HJpOhoqJC53YVCkWn6qqvr+/U+8WgO4yxs98DMeAYLQPHqJtcLtfZbrIQmzJlitZrPz8/+Pj4YNeuXfD39+/wdtsbcHssfV7B7jB3ItD574G5UygUHKMF4Bg7z2wusbezs8OIESNw5coVODk5AQCqqqq01qmqqoKjo6MpyiMiIjNkNiHW2NgIhUIBJycnuLm5wcnJCQUFBVrtRUVFCAwMNGGVRERkTkx2OPG9997D9OnT4eLiojkn1tDQgLlz50IikSA6OhrJycmQy+Xw8PBAUlISbG1tMXv2bFOVTEREZsZkIXbjxg0sWLAA1dXVcHBwgJ+fH/Ly8uDq6goAWLp0Ke7evYuYmBioVCr4+voiJycHffv2NVXJRERkZkwWYpmZmTrbJRIJYmNjERsb20UVERGR2JjNOTEiIiJ9McSIiEi0GGJERCRaDDEiIhItk13YQUSky/KPP7P42WW6www665dGGnX73BMjIiLRYogREZFoMcSIiEi0GGJERCRaDDEiIhIthhgREYkWQ4yIiESLIUZERKLFECMiItFiiBERkWgxxIiISLQYYkREJFoMMSIiEi2GGBERiRZDjIiIRIshRkREoiU4xBISEnDhwoU220tLS5GQkGCQooiIiIQQHGLx8fE4f/58m+0MMSIi6moGO5xYV1eHnj17GmpzRERE7eqhq/Gnn37CuXPnNK+Liopw//79FuupVCpkZmZCLpcbvkIiIqI26AyxQ4cOaQ4RSiQSbN++Hdu3b291XalUik8//dTwFRIREbVBZ4i9+uqrmD59OtRqNUJDQ/HOO+9gypQpLdaztbXF0KFD0aOHzs0REREZlM7UcXZ2hrOzMwDg4MGD8PT0hEwm65LCiIiI2iN41+mJJ54wZh1ERER6azPElixZAolEgpSUFFhbW2PJkiXtbkwikSA1NdWgBRIREbWlzRA7evQorKys0NTUBGtraxw9ehQSiUTnxtprJyIiMqQ2Q+y3l9a39trQkpOT8dFHH2HhwoVITEwEAKjVasTHx+Pzzz+HSqWCr68vkpKS4OXlZdRaiIhIHMxi7sSSkhJ89tlnGDlypNbylJQUpKWlISEhAfn5+ZDJZIiIiEBtba2JKiUiInPSoRCrq6vDtWvX8Msvv7T40dft27excOFCpKamQiqVapar1Wqkp6dj2bJlCA8Ph7e3N9LT01FXV4fs7OyOlE1ERBZG8NWJjY2NSEhIQFZWFmpqatpcT1dba5pDKiQkRGvuxfLyciiVSoSGhmqW2djYICgoCCdPnkRUVJRe/RARkeURHGIrV67EX//6V4SFhWHChAlae00d9fnnn+PKlSutzvShVCoBoMV9aTKZDBUVFW1uU6FQdKqm+vr6Tr1fDLrDGDv7PRCD7jDG7vBd7Q5j7Mx3tb3pDAWH2MGDBzF//nxs2LChw8X8lkKhwEcffYTc3FyDThzc2fkbbW1tDVSJeaqvr7f4MQKd/x6YO4VCYfFjBPj3aCmM+V0VfE5MIpHg8ccfN1jHp06dQnV1NcaPHw97e3vY29vjxIkTyMjIgL29PQYOHAgAqKqq0npfVVUVHB0dDVYHERGJl+AQmzFjBr777juDdRwWFobCwkIcO3ZM8zN27Fi88MILOHbsGDw8PODk5ISCggLNexobG1FUVITAwECD1UFEROKl1zmx1157DW+99Rbmz58PFxcXWFtbt1hP6NyKUqm0xXm1Pn36YMCAAfD29gYAREdHIzk5GXK5HB4eHkhKSoKtrS1mz54ttGwiIrJggkPM398fwMObnnfs2NHmevpenajL0qVLcffuXcTExGhuds7JyUHfvn0N1gcREYmX4BBbvXq10aeVOnz4sNZriUSC2NhYxMbGGrVfIiISJ8EhxiAhIiJzYxbTThEREXWE4D2x386m0RaJRILVq1d3qiAiIiKhBIdYfHx8m20SiQRqtZohRkREXUpwiP373/9usaypqQlXr15FRkYGCgsLOTEvERF1qU6dE7OysoK7uzvWr1+PYcOGcS+MiIi6lMEu7AgKCsI333xjqM0RERG1y2AhdubMGVhZ8WJHIiLqOoLPif31r39tdfnt27dRWFiomeWeiIioqwgOscWLF7fZZm9vj+XLl/OcGBERdSnBIfbDDz+0WCaRSCCVSjmXIRERmYTgEHN1dTVmHURERHrjlRhERCRaDDEiIhIthhgREYkWQ4yIiESLIUZERKIlKMQaGhowcOBAJCUlGbseIiIiwQSFWJ8+feDg4IB+/foZux4iIiLBBB9OnDVrFvbt24empiZj1kNERCSY4Judn332WRw7dgzTp0/H/Pnz4e7uDhsbmxbr+fr6GrRAIiKitggOsfDwcM2/S0pKIJFItNqbn+xcU1NjuOqIiIh0EBxiaWlpxqyDiIhIb4JD7OWXXzZmHURERHrr0H1ily9fRnFxMW7fvm3oeoiIiATTK8T27NmDUaNGwd/fHzNmzMDZs2cBANXV1fD19cW+ffuMUiQREVFrBIfY/v37sWjRIgwfPhwfffQR1Gq1ps3e3h7Dhw/Hl19+aZQiiYiIWiM4xP785z9j0qRJyMnJafX8mJ+fH3766SeDFkdERKSL4BC7dOkSnn322TbbZTIZbt26ZZCiiIiIhBAcYn369EF9fX2b7T///DPs7e0NUhQREZEQgkMsJCQEu3btwr1791q0VVRU4PPPP0doaKhBiyMiItJFcIitXbsWN2/exKRJk5CRkQGJRIK8vDysW7cOQUFBsLKywttvvy24461btyIoKAhDhgzBkCFDMGXKFHz99deadrVajbi4OIwYMQLOzs4ICwtDaWmpfqMjIiKLJjjEhg0bhq+//hpOTk6Ij4+HWq1GWloaUlJSMHr0aOTm5mLIkCGCO3700Ufx4Ycf4vvvv0dBQQFCQkLwyiuvaC4OSUlJQVpaGhISEpCfnw+ZTIaIiAjU1tbqP0oiIrJIgmfsAABPT0/s27cPKpUKV65cQVNTE9zd3eHg4KB3x2FhYVqv165di23btqGkpAQjR45Eeno6li1bppmzMT09HXK5HNnZ2YiKitK7PyIisjwdmrFDKpVi3Lhx8PPz61CA/d6DBw+wd+9e1NfXIyAgAOXl5VAqlVrn2GxsbBAUFISTJ092uj8iIrIMeu2JqVQqpKWl4euvv8bVq1cBAK6urpg2bRqWLFkCqVSqV+fnz5/H1KlT0djYCFtbW+zYsQMjR47UBJVMJtNaXyaToaKiQq8+iIjIcgkOsStXrmDmzJm4fv06vLy8EBwcDODhPIpJSUnYtWsXDhw4gGHDhgnuXC6X49ixY7hz5w7279+P6OhoHDp0SP9R/IZCoejU+3XdRmApusMYO/s9EIPuMMbu8F3tDmPszHdVLpfrbBccYjExMZqwCQkJ0Wr7/vvvMW/ePLz99tvIzs4WXFyvXr3w2GOPAQB8fHzwz3/+E5s3b8aqVasAAFVVVVoXi1RVVcHR0VHnNtsbcHtsbW079X5zV19fb/FjBDr/PTB3CoXC4scI8O/RUhjzuyr4nFhRURHeeOONFgEGAE8++SRef/11FBYWdqqYpqYm3Lt3D25ubnByckJBQYGmrbGxEUVFRQgMDOxUH0REZDkE74n1799f5zkvqVSK/v37C+543bp1mDp1KgYPHoy6ujpkZ2fj+PHj2L17NyQSCaKjo5GcnAy5XA4PDw8kJSXB1tYWs2fPFtwHERFZNsEhNm/ePOzYsQPz5s1D3759tdpu376NHTt2YP78+YI7ViqVWLRoESorK9GvXz+MHDkS2dnZeOqppwAAS5cuxd27dxETEwOVSgVfX1/k5OS06JuIiLovwSEml8shkUjg5+eHuXPnas5lXb58GV9++SVkMhnkcnmLZ4pFRES0ur309HSd/UkkEsTGxiI2NlZoiURE1M0IDrFFixZp/p2SktKivbKyEosWLdJ6zphEImkzxIiIiDpLcIgdPHjQmHUQERHpTXCIPfHEE8asg4iISG8dmnaKiIjIHDDEiIhItBhiREQkWgwxIiISLYYYERGJluAQS0hIwIULF9psLy0tRUJCgkGKIiIiEkJwiMXHx+P8+fNttjPEiIioqxnscGJdXR169uxpqM0RERG1S+fNzj/99BPOnTuneV1UVIT79++3WE+lUiEzM7NbPN+IiIjMh84QO3TokOYQoUQiwfbt27F9+/ZW15VKpfj0008NXyEREVEbdIbYq6++iunTp0OtViM0NBTvvPMOpkyZ0mI9W1tbDB06FD16CJ7FioiIqNN0po6zszOcnZ0BPJwA2NPTEzKZrEsKIyIiag8nACYiItHS6/jf3//+d2RlZaGsrAwqlUrr2WHAw/NmZ8+eNWiBREREbREcYhs3bsS6devg6OiIcePGwdvb25h1ERERtUtwiP3lL39BSEgI9uzZw/vBiIjILAi+2VmlUiE8PJwBRkREZkNwiPn6+kKhUBizFiIiIr0IDrGkpCQcOnQIu3fvNmY9REREggk+JzZ//nzcu3cPb7zxBpYvX45BgwbB2tpaax2JRILi4mKDF0lERNQawSHm4OAAmUwGDw8PY9ZDREQkmOAQO3z4sDHrICIi0huf7ExERKKlV4jV1NRg/fr1mDZtGsaNG4dTp05plickJODixYtGKZKIiKg1gg8nlpeX45lnnkFNTQ28vb1RVlaGu3fvAgAGDhyInJwc3Lp1C4mJiUYrloiI6LcEh9gHH3wAtVqN4uJi9O3bt8UFHjNmzOB5MyIi6lKCDyd+9913WLhwIdzd3SGRSFq0u7m54caNGwYtjoiISBfBIfaf//wHUqm0zfbbt2/DyorXiRARUdcRnDpeXl44ceJEm+2HDx/GmDFjDFIUERGREIJDLDo6Gvv27UNSUhL+/e9/AwCamppw6dIlLFiwAKdPn8aSJUsEd5ycnIzJkydjyJAhGDZsGObMmYMLFy5oraNWqxEXF4cRI0bA2dkZYWFhKC0tFdwHERFZNsEhFhkZibVr1yIhIQH+/v4AgBdeeAHjx4/H3/72N3z44Yd45plnBHd8/Phx/Pd//ze+/vprHDhwAD169MCsWbM0AQkAKSkpSEtLQ0JCAvLz8yGTyRAREYHa2lo9hkhERJZKryc7L1++HJGRkThw4ACuXLmCpqYmDB06FM899xzc3d316jgnJ0fr9ZYtW+Dq6ori4mI888wzUKvVSE9Px7JlyxAeHg4ASE9Ph1wuR3Z2NqKiovTqj4iILI9eIQYALi4uWLx4scELqaurQ1NTk+bikfLyciiVSoSGhmrWsbGxQVBQEE6ePMkQIyIi4SFWXFyMwsJCrFixotX2Tz75BBMnTkRAQECHClmzZg1Gjx6teb9SqQQAyGQyrfVkMhkqKira3E5nn3lWX1/fqfeLQXcYY3d49l13GGN3+K52hzF25rsql8t1tgsOsYSEBJ2X2P/00084fvw49u7dK7y6/++dd95BcXExcnNzWzzeRV/tDbg9tra2nXq/uauvr7f4MQKd/x6YO4VCYfFjBPj3aCmM+V0VfGHHjz/+qHMvy9/fHz/88IPeBcTGxmLv3r04cOCA1nk1JycnAEBVVZXW+lVVVXB0dNS7HyIisjyCQ6yhoaHVmTp+q66uTq/O3377bU2ADR8+XKvNzc0NTk5OKCgo0CxrbGxEUVERAgMD9eqHiIgsk+AQ8/DwQH5+fpvt3377LR577DHBHa9atQq7du3C1q1bIZVKoVQqoVQqNUEokUgQHR2NlJQUHDhwABcuXMDixYtha2uL2bNnC+6HiIgsl+AQmz9/PvLy8rB69Wqte7lqamoQExOD/Px8zJs3T3DHGRkZqK2tRXh4ODw9PTU/mzZt0qyzdOlSREdHIyYmBpMnT8bNmzeRk5ODvn37Cu6HiIgsl+ALOxYuXIhz585h69atyMjI0JyXqqyshFqtxssvv4zo6GjBHatUqnbXkUgkiI2NRWxsrODtEhFR96HXfWIbN27U3OxcVlYGAHB3d0d4eDieeOIJY9RHRETUJkEhdu/ePZSUlMDZ2RnBwcEIDg42dl1ERETtEnROrHleQ10XdhAREXU1QSFmZWUFV1dXvS+hJyIiMibBVye+8cYb+Oyzz1rcfExERGQqgi/saGhoQJ8+fTBu3DiEhYXB3d0dNjY2WutIJBK89dZbBi+SiIioNYJDbN26dZp/f/XVV62uwxAjIqKuJDjEOjIvIhERkTEJDjFXV1dj1kFERKQ3vR+KefnyZRw/fhxVVVWIjIyEm5sb7t27B6VSCScnJ/Tq1csYdRIREbUgOMSampqwfPlyZGVlQa1WQyKRwN/fXxNiEydORExMDN58801j1ktERKQh+BL7P//5z9ixYwfeffdd5OXlQa1Wa9rs7Ozw3HPP4dChQ0YpkoiIqDWCQ2znzp34r//6L6xcubLVR654e3vj8uXLBi2OiIhIF8EhduPGDfj6+rbZbmNjwxk9iIioSwkOMUdHR1y9erXN9rNnz2LIkCEGKYqIiEgIwSE2c+ZMZGZmah0ylEgkAIC8vDx8+eWXmDVrluErJCIiaoPgEFuzZg1cXFwQEhKChQsXQiKRIDk5GU8//TTmzJmDUaNGYcWKFcaslYiISIvgEOvXrx+++eYbrFixApWVlejduzeKi4tRX1+PNWvW4MiRIy3mUiQiIjImvW527t27N1auXImVK1caqx4iIiLB2g2xxsZGHDlyBOXl5Rg4cCCmTZsGZ2fnrqiNiIhIJ50hVlFRgRkzZqC8vFxzc3OfPn3w5ZdfIjg4uEsKJCIiaovOc2Lr16/H1atXsXjxYnz11VeIi4tD79698fbbb3dVfURERG3SuSf23XffYe7cuVi/fr1mmaOjIxYsWIDr169j8ODBRi+QiIioLTr3xJRKJQIDA7WWjR8/Hmq1GteuXTNqYURERO3RGWIPHjxA7969tZY1v25sbDReVURERAK0e3ViWVkZ/vGPf2he37lzBwCgUChgZ2fXYn1d8ysSEREZUrshFhcXh7i4uBbLV69erfW6+RljNTU1hquOiIhIB50hlpaW1lV1EBER6U1niL388stdVQcREZHeBM+dSEREZG4YYkREJFomDbETJ07gpZdegpeXF6RSKXbu3KnVrlarERcXhxEjRsDZ2RlhYWEoLS01UbVERGRuTBpi9fX18Pb2Rnx8fKuPcUlJSUFaWhoSEhKQn58PmUyGiIgI1NbWmqBaIiIyNyYNsalTp+L9999HeHg4rKy0S1Gr1UhPT8eyZcsQHh4Ob29vpKeno66uDtnZ2SaqmIiIzInZnhMrLy+HUqlEaGioZpmNjQ2CgoJw8uRJE1ZGRETmQq+HYnYlpVIJAJDJZFrLZTIZKioq2nyfQqHoVL/19fWder8YdIcxdvZ7IAbdYYzd4bvaHcbYme+qXC7X2W62IdZR7Q24Pba2tgaqxDzV19db/BiBzn8PzJ1CobD4MQL8e7QUxvyumu3hRCcnJwBAVVWV1vKqqio4OjqaoiQiIjIzZhtibm5ucHJyQkFBgWZZY2MjioqKWjwehoiIuieTHk6sq6vDlStXAABNTU24du0afvzxRwwYMABDhgxBdHQ0kpOTIZfL4eHhgaSkJNja2mL27NmmLJuIiMyESUPszJkzeO655zSvm2fMnzt3LtLT07F06VLcvXsXMTExUKlU8PX1RU5ODvr27WvCqomIyFyYNMSCg4OhUqnabJdIJIiNjUVsbGwXVkVERGJhtufEiIiI2sMQIyIi0WKIERGRaDHEiIhItBhiREQkWgwxIiISLYYYERGJFkOMiIhEiyFGRESixRAjIiLRYogREZFoMcSIiEi0GGJERCRaDDEiIhIthhgREYkWQ4yIiESLIUZERKLFECMiItFiiBERkWgxxIiISLQYYkREJFoMMSIiEi2GGBERiRZDjIiIRIshRkREosUQIyIi0WKIERGRaDHEiIhItBhiREQkWgwxIiISLYYYERGJlihCLCMjA2PGjIGTkxOefPJJFBYWmrokIiIyA2YfYjk5OVizZg1WrlyJo0ePIiAgAJGRkfjll19MXRoREZmY2YdYWloaXn75ZfzhD3+Ap6cnEhMT4eTkhMzMTFOXRkREJiZRqVRqUxfRlnv37mHQoEHYtm0bZs2apVm+atUqXLhwAUeOHDFhdUREZGpmvSdWXV2NBw8eQCaTaS2XyWSorKw0UVVERGQuzDrEiIiIdDHrELO3t4e1tTWqqqq0lldVVcHR0dFEVRERkbkw6xDr1asXfHx8UFBQoLW8oKAAgYGBJqqKiIjMRQ9TF9CeJUuW4PXXX4evry8CAwORmZmJmzdvIioqytSlERGRiZn1nhgAPP/884iLi0NiYiKCg4NRXFyM3bt3w9XVtdPb/uyzz/Dss8/C1dUVUqkU5eXl7b5n586dkEqlLX4aGxs7XY8xdGSMALB//34EBgbC0dERgYGBOHjwoJEr7bj//Oc/iImJwWOPPYZHH30UL730Eq5fv67zPXFxcS0+w+HDh3dRxe3T9wb/48eP48knn4STkxMef/xxUdyCos8Yjx071urf3aVLl7qwYv2cOHECL730Ery8vCCVSrFz585233P+/HnMmDEDzs7O8PLyQkJCAtRqs72AXO8xlpeXt/o5fvvttx2uwexDDAAWLFiAc+fOobKyEt9//z0mTpxokO02NDQgNDQUa9as0et9ffr0wcWLF7V+evfubZCaDK0jYzx16hRee+01REZG4tixY4iMjMSrr76K06dPG7HSjouNjcXBgwexbds2HDlyBLW1tZgzZw4ePHig831yuVzrMzSXmWD0vcG/rKwML774IgICAnD06FGsWLECq1evxv79+7u4cuE6OolBcXGx1mc2bNiwLqpYf/X19fD29kZ8fDxsbGzaXf/OnTuIiIiAo6Mj8vPzER8fj02bNiE1NbULqu0YfcfYbO/evVqfY0hISIdrMPvDica0ePFiAMCZM2f0ep9EIoGTk5MxSjK4jowxPT0dwcHBWLVqFQDA09MTx44dQ3p6OrZt22aUOjvq9u3byMrKQlpaGiZPngwA2LJlC0aPHo3vvvsOTz31VJvv7dGjh1l+jr+9wR8AEhMT8fe//x2ZmZn44IMPWqy/fft2ODs7IzExEcDDz+v06dNITU1FeHh4l9YulL5jbCaTyWBvb99VZXbK1KlTMXXqVAD/93eoy549e3D37l2kp6fDxsYG3t7euHTpEjZv3ow//vGPkEgkxi5Zb/qOsdnAgQMN9rcnij0xc3P37l2MGjUK3t7emDNnDn744QdTl2RQJSUlCA0N1Vr21FNP4eTJkyaqqG1nz57Fr7/+qlWvi4sLPD092623rKwMI0aMwJgxY/Daa6+hrKzMyNW27969ezh79myL339oaGib4zl16lSrn9eZM2fw66+/Gq3WjurIGJtNmjQJnp6emDlzJo4ePWrMMrvcqVOnMGHCBK09mqeeegoVFRWCTwOIxbx58+Dh4YFp06Z1+ogBQ0xPcrkcqamp2LVrFzIyMvDII49g+vTpuHz5sqlLMxilUimaG8wrKythbW3d4v/O26vXz88PmzdvRnZ2NjZu3AilUompU6eipqbG2CXr1JEb/CsrK1td//79+6iurjZarR3VkTE6OzsjOTkZWVlZyMrKglwuR3h4uNkcAjaEtj7H5jZLYGdnh//5n//B9u3bsWfPHoSEhCAqKgpfffVVh7dpcYcT169fj6SkJJ3rHDx4EMHBwR3afkBAAAICAjSvAwMDERwcjC1btuB///d/O7RNfRl7jOZA6Bg7asqUKVqv/fz84OPjg127duGPf/xjh7dLxiGXyyGXyzWvAwICcPXqVWzcuBFBQUEmrIz0YW9vjzfffFPzeuzYsaipqUFKSgrmzJnToW1aXIhFR0fjxRdf1LmOi4uLwfqztraGj48Prly5YrBttsfYY3RycjL5DeZCx1hSUoIHDx6guroaDg4OmraqqipMmDBBcH92dnYYMWJEl36OrenIDf6Ojo6trt+jRw+zPH9kqEkMfH19kZOTY+jyTKatz7G5zVL5+voKunKzLRYXYvb29l36h6tWq3H+/HmMGjWqy/o09hj9/f1RUFCAt956S7Osq28wFzpGHx8f9OzZEwUFBYiMjAQAXL9+HRcvXtSr3sbGRigUCpPvvf72Bv/fTnpdUFCAmTNntvqegIAAHDp0SGtZQUEBxo4di549exq13o7oyBhbc+7cObO8MKejAgICsG7dOjSPy9JFAAAKgElEQVQ2Nmqudi4oKMCgQYPg5uZm4uqMp7Ofo8WFmD6USiWUSiX+9a9/AQAuXryI27dvY8iQIRgwYAAAYObMmfD19dVcMRUfHw9/f38MGzYMd+7cwZYtW3D+/HkkJyebbBy6dGSMb7zxBmbMmIFPPvkEYWFhOHToEI4dO4bc3FyTjaMt/fv3x7x58/DBBx9AJpNhwIABePfddzFy5EhMmjRJs56/vz8WLlyIRYsWAQDee+89TJ8+HS4uLrh16xYSExPR0NCAuXPnmmgk/6e9G/xff/11AA+vwgSAqKgobN26FWvWrEFUVBROnjypOWdrrvQd4+bNm+Hq6govLy/cu3cPu3fvxuHDh/HFF1+YbAztqaur0+zZNzU14dq1a/jxxx8xYMAADBkyBB9++CH+8Y9/4MCBAwCA2bNnIyEhAYsXL8aqVavwr3/9Cxs2bMDq1avN8spEQP8x7tq1Cz179sSYMWNgZWWF3NxcZGRkYN26dR2uoVuHWGZmJhISEjSvmw9fpaWl4ZVXXgEA/Pzzzxg8eLBmndu3b2Pp0qWorKxEv379MGbMGBw5cgS+vr5dW7xAHRlj839U1q9fj48//hhDhw5FZmYm/Pz8urZ4geLi4mBtbY2oqCg0NjYiJCQEf/nLX2Btba1ZR6FQaF3kcOPGDSxYsEBzGNLPzw95eXkGuYm+s55//nnU1NQgMTERSqUSXl5eWjf4X7t2TWt9d3d37N69G++88w4yMzPh7OyMhIQEs728HtB/jL/++ivef/993LhxA71799as33x5tzk6c+YMnnvuOc3ruLg4xMXFYe7cuUhPT8fNmzfx888/a9r79++Pffv2YdWqVZg8eTKkUimWLFli1udo9R0jACQlJeGXX36BtbU1hg0bhtTU1A6fDwPM/HliREREuvASeyIiEi2GGBERiRZDjIiIRIshRkREosUQIyIi0WKIERGRaDHEyKJkZ2dDKpXixIkTWssrKyshlUq15t9rtnXrVkilUly4cAHAwymvRo8ebdQ6u6IPQwoLC9N6iKGLiwumTZuGI0eOGLSf5ocmdmYaIupeGGJkUZong/397OaFhYXo06cPqqqqWjwNuLCwEAMHDoSXlxcAYPXq1dixY4dR6+yKPgxt5MiRyMvLQ15eHjZt2oT6+nrMmzfPbB+WSt1Dt56xgyzPo48+iqFDh7YIsRMnTiA4OBiXLl1CYWEhhg8frmkrKirC+PHjNVP7DB061Oh1dkUfhta3b1/4+/sDeDiNV0BAAEaNGoWdO3ea7WwuZPm4J0YWJygoCCUlJbh//75mWWFhIYKCgjB+/HitgLt8+TJu3ryJiRMnapb9/lBf8yGu7du3409/+hM8PT3h6uqKOXPm4Pr161p9jx49GosWLcLevXsREBCARx99FJMmTUJRUZHWep3po6GhAStWrMDQoUMxePBgvPLKKzh58mSLw3D//Oc/MWvWLAwdOhTOzs54/PHHsXLlyg7+VlsaPHgwHBwcWkwRBQAHDhzA008/jUGDBsHV1RV/+MMf8Msvv7QYx8qVKzXjeOmll3Djxg2D1UfdA0OMLE5QUBDq6uo0T9xWqVQoLS3FhAkTMGHCBK0Qaz539tsQa0tycjJ+/vlnpKamIj4+HiUlJZoJhX+rsLAQqampePfdd5GZmYkHDx5gzpw5UKlUBulj2bJl2LFjB958803s2LEDcrkcCxcu1Fqnrq4Ozz//PKytrbF582bs2bMHq1ev1gp2AJBKpYiOjm63rtbU1taipqYG7u7uWsszMzMxf/58eHp64vPPP8eGDRtQWlqKsLAw1NbWao3jiy++wJIlSzQPuvz9OIjaw8OJZHGaA6mwsBC+vr4oKirCI488Ah8fHwwcOBDXrl1DeXk53NzcUFhYiH79+gm6yMLV1VVrZvjq6mqsXbsWFRUVGDRokGZ5bW0tjh8/DqlUCuDh89kmT56MvLw8zeNiOtqHQqHAnj17sG7dOixduhQAMHnyZDQ0NODTTz/VvE+hUEClUuHDDz/UekxQ86TPzaytrbUmSm5Pcwheu3YNH3zwAQYMGIAlS5Zo2uvq6rBu3Tq88sorSEtL0ywfN24c/P39kZWVhcWLF0OhUCA7Oxtr167F8uXLAQChoaGor69HZmam4HqIuCdGFsfd3R2DBw/W7GU1h1mvXr3g4eEBmUym2RsrLCxEYGCgoP+Q/37GdG9vbwAtZ1wPCAjQBJiu9TrSx+nTp6FWq1vMUP/714899hj69++P5cuX46uvvmqz7+rqaqSmprZbFwAUFxfDwcEBDg4O8PHxQW5uLr744gutPbGSkhLcuXMHL774Iu7fv6/5cXFxgVwu1/zeT58+jaamJkRERGj18fzzzwuqhagZQ4wsUlBQEIqLi6FWq1FYWKj1lOfm82LXr1/H1atXBT/evvn5a8169eoF4OEDNXWt98gjj7S6Xkf6UCqVAACZTKa13u+f/Nu/f38cPHgQzs7OWLVqFUaNGoUJEyZg//797dbQllGjRqGgoADffvstNm3aBDs7O7z66qu4deuWZp3mJxGHh4drAq/558KFC6ipqdFrHETt4eFEskgTJ07Enj17UFJSgh9++AHvvfeepm3ChAnYtm2bZk9NaIiZg+Yn4FZVVcHW1lazvLKyssW6Y8aMQVZWFu7fv48zZ84gOTkZUVFROH78uGYPTx92dnYYO3YsAMDPzw9ubm6YOXMm4uPjkZSUBAAYOHAggIcPsWy+ZeH329B3HES6cE+MLFJzMH3yySdQq9WaS8OBhyF2+fJl7Nu3D3369MG4ceNMVabefH19IZFIWuxR/e1vf2vzPT169IC/vz/effddNDU1tbhPrqNCQkLw7LPP4osvvtBcQRkQEIC+ffviypUrGDt2bIuf5pvN/fz8YGVlhX379mltMycnxyC1UffBPTGySMOHD4dMJkNubi58fHw0ewDAwz0UOzs75ObmIjg4GD179jRhpfoZPnw4IiMj8ac//QlNTU3w8fHB0aNHkZubCwCwsnr4/6W5ubn47LPPEBYWBjc3NzQ0NGDLli1a93oBgL29PebOnSv4vNjvxcbG4vDhw9iwYQMSExPRr18/fPTRR1i1ahWqq6vx9NNPo1+/fqioqMCJEyfwxBNPIDIyEnK5HLNnz8bHH3+MpqYmjBs3Dvn5+fjmm286/0uiboUhRhYrKCgI+/fv1zofBjy8Is/f3x8FBQWiOpTYbMOGDbCzs0NKSgp+/fVXBAcHIykpCXPmzEG/fv0AAMOGDYONjQ0SExOhVCphZ2eHcePGYd++fRg8eLBmWw8ePMCDBw86XMvIkSPxwgsvICsrCytXroSzszOioqIwePBgbNy4EdnZ2bh//z4GDRqECRMmaF0F2jyOTZs2acaRkZGB6dOnd/yXQ92ORKVSqU1dBBF1zqZNm/D+++/jxx9/xJAhQ0xdDlGX4Z4Ykcjk5uaitLQUo0ePhpWVlebm6oiICAYYdTsMMSKRsbOzw+HDh/HJJ5+goaEBgwYNwuuvv47Y2FhTl0bU5Xg4kYiIRIuX2BMRkWgxxIiISLQYYkREJFoMMSIiEi2GGBERiRZDjIiIROv/AQd5WySm4YnNAAAAAElFTkSuQmCC\n", "text/plain": [ "Color | \n", "
---|
Purple | \n", "
Purple | \n", "
Purple | \n", "
White | \n", "